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An improved means of generating high-beta equilibria by injection in magnetostatic 
simulations of strong ion rings is described. The existence of stochastic orbits in these 
equilibria is demonstrated. For nonlinear axisymmetric two-dimensional simulations with all 
three velocity components included, the principal manifestation of such orbits is an eventual 
violation of left-right mirror symmetry in cases where such symmetry would normally be 
expected. This effet is due to the exponential divergence of “neighboring” mirror image trajec- 
tories. Linearized simulations, in effect, compute the first order separation of orbits which are 
displaced from each other by an infinitesimal vector for all time. When a linearized code is 
applied to a problem involving stochastic orbits, the single-particle growth can be faster than 
that associated with the collective modes of interest, rendering the simulation invalid. This 
limits the class of problems to which straightforward linearized simulation is applicable. 
Related difficulties in nonlinear codes using certain “quiet-start” techniques involving loading 
of particles on axisymmetric rings can be anticipated. These effects should also be evident in 
simulations of field-reversed mirror systems, ordinary mirror machines, and other devices. 

I. INTRODUCTION 

The term “stochastic” is applied to orbits which, loosely speaking, sweep out a 
nonzero volume of the appropriate phase space (the terms “chaotic” and “ergodic” 
also have been used by some authors to describe such orbits). Nonstochastic orbits 
are constrained by an additional constant of the motion to lie on a lower-dimensional 
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surface in this space, and so cannot sweep out a finite volume. Thick ion rings, with 
aspect ratios of order unity, have been found to include a fraction of stoch.astie 
single-particle orbits for moderate values of the field reversal parameter [I]. S~rn~ 
field reversed mirror plasmas may also entail stochastic orbits [l, 21. ese 
configurations are in contrast with infinitesimally thin “bicycle-tire” rings for ich 
the poloidal angular momentum provides a constant of the motion for all p~t~~~e$~ 
with axially-infinite layers for which the axial momentum is conserved, and with 
those mirror plasmas in which the magnetic moment is an adiabatic i~va~ia~~. 
Furthermore, finite-aspect-ratio bicycle-tire rings and nonin~nite long layer equilibrium 
and even certain model thick ion ring equilibria [3,4]> may also contain no 
stochastic orbits. 

Excellent reviews of orbital stochasticity theory and related issues are available in 
e published literature, and the reader is referred to (in particular) Refs. 12’4, 5f. 
ere we briefly mention a few aspects of the theory which are of direct rele~a~~~, 

and attemt to clarify some terminology; the latter is by no means standardized‘ 
The stochasticity of orbits in a system such as the one we are considering is turned 

“intrinsic” because it is inherent in the particle motion in a static field-no col~i~i~~~1 
effects are involved. While motion in the full phase space is deterministic, the inter- 
sections of a trajectory with a slice of the phase space appear to be random. 

One aspect of stochastic-orbit equilibria is of particular concern to s~rn~~a~~o~ 
models in general and linearized simulations in particular. This is their ~r~p~r~~ of 
‘Vocal” or structural” instability, whereby neighboring trajectories diverge fro 
other exponentially with time, at least when viewed on a ~imes6ale long co 
with the system’s characteristic timescale (for ion rings this is the self field ~~a~r~~ 
timescale). The rate of separation of neighboring orbits is alternately term the 
‘“Kolmogorov entropy” (although it has the dimensions of a ~req~en~y~ [S] the 
Liapunov exponent [6]. When orbits are stochastic, the ~~lrno~orov entraps is 
positive. Strictly speaking, stochasticity .(in the sense that a third invariant is 
is always present when local instability (in the sense of ~~pone~tiali~~ di 
orbits) is present, but the converse is not rigorously true, though it is generally ttrue m 
practice [ 7-9 ]. The term ‘“ergodicity,” though often used syno~yrn~~~ly with 
‘“stochasticity,” is more usually taken to refer to an equivalence of time and ~~~~rnb~e 
averages or an arbitrarily close approach of the trajectory to all points of the energy 
surface. Tne term “chaotic” (used as an adjective to describe trajectories) ap 
us to be synonymous in the literature with either “stochastic” or ““locally unst 
is generally used to describe the aperiodic motion that can arise even in simple 
mappings and dynamical systems [24]. In any event, it is the ~r~~~rty of local 
instability which is of primary interest here, as this is what is meas~able in the 
simulations, Also of interest is the stochastic nature of the unstable orbits as evident 
in their surface of section plots, described below. In this paper the term ~~s~~~~a~t~~~~ 
will generally be used in favor of ‘Lergodic” or ‘“chaotic”; it should be ~~~~~~~~ that 
the rapid divergence of neighboring orbits is implied, since in our ~~~~~a~i5~s 
stochasticity and local instability have always appeared together. 

The ~I~~~~~~ID code [ 101 is a linearized hybrid code which a~s~rn~$ an 
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axisymmetric magnetostatic equilibrium. It models the evolution of linearized non- 
axisymmetric (3d) perturbations about this equilibrium. Using this code, we have 
observed two manifestations of orbital stochasticity. The first is evident in the zero 
order motion of particles in an ion ring, appearing as an eventual violation of mirror 
symmetry about the plane z = L/2, and is probably not of serious consequence. We 
confirm the existence of both stochastic and nonstochastic zero order orbits by means 
of surface of section plots. The second manifestation is a ragged exponential growth 
of the first-order separation of the displaced and undisplaced particles. Stochasticity 
is evident in the linearized motion because B” is evaluated at the perturbed particle 
location; the perturbed orbit is always a “neighbor” of the unperturbed orbit, and so 
their separation can grow exponentially as they move in the equilibrium field. Since 
this growth can be rapid, it can easily mask the behavior of the collective modes 
which are the real objects of study in linearized simulation, thereby rendering the 
simulation invalid. 

In Section II we describe the means by which equilibria are generated, and present 
a simple infinite-layer example. Section III describes an ion ring equilibrium, and the 
observation of stochastic orbit effects in the simulation of particle motion in this 
equilibrium. Section IV describes the effects of orbital stochasticity as manifested in 
the motion of the displacements between unperturbed and perturbed orbits in the 
linearized simulation. Section V summarizes this work, and presents our conclusions. 

II. GENERATION OF EQUILIBRIA 

The modelling of axisymmetric high-beta systems, such as field reversed particle 
rings or mirror plasmas, via particle-in-cell simulation techniques often requires the 
generation of an appropriate equilibrium. Such a state can never be truly time- 
independent, since the equilibrium orbits do not constitute a laminar flow pattern, but 
rather entail chaotic particle motion. Since the number of particles used is finite, it 
follows that fluctuations in the fields will persist even if great care is used in 
initializing the equilibrium. Nonetheless, it is desirable to be able to attain as quiet an 
equilibrium as possible by minimizing fluctuations of the fields and of the 
macroscopic moments of the particle distribution. We present here a technique which 
has been found useful in this regard. 

There are two ways by which high-beta equilibria have been created in particle 
codes. The first of these involves the implementation of an approximation to a Vlasov 
equilibrium, either known analytically [ 111, or obtained from another computer 
program [ 12, 131. By appropriate integrals over the distribution function one obtains 
the density at each point in space and assigns particles to positions in the T-Z plane 
accordingly. The velocity distribution at each point is then modeled by assigning 
velocities to the various particles in such a way that the distribution of velocities has 
approximately the same moments as the desired Vlasov distribution. Due to the finite 
cell size, time step, and number of particles used, some errors are introduced, but in 
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general equilibria formed by this method should be quiescent enough for most 
purposes. The main drawback of this method is the complexity of implementations 
thi.s is especially true for cases in which the equilibrium distribution is not expressible 
in closed form, or entails more than one nonignorable spatial coordinate, so that there 
is no unique inversion of the density distribution into the set of initial particle 
Iocations. Another drawback is the arbitrariness of the distribution function chosen; 
one chooses between (say) the rigid-rotor or double-delta-function forms on the basis 
of physical intuition. 

A much simpler alternate method which is often employed involves the expedient 
of injecting pulses of particles at appropriate points in space over a period of time. 
This emulates the physical process of creating a plasma by neutral beam injection. 
We would then expect to observe non-equilibrium behavior of the injected particles. 
Coherent motions would persist indefinitely in the system; for example, in a ’ 
equilibrium of energetic particles whose orbits encircle the axis, we expect oscilia 
in the mean particle r-coordinate at approximately the cyclotron frequency, a so- 
called breathing motion of the ring. This is due to orbits of each elements of the ring 
being off-center. Similarly, we would expect oscillations in the minor dime~is~~ns of 
the ring due to coherent betatron motion of the particles-this effect would be 
expected to phase-mix away to a large degree, while the former would not. e thus 
seek a means for damping collective oscillations out of the system, while fusing 
that currents and tields be consistent when equilibrium has been reached. 

The model we consider assumes neutralization of currents in the r-‘--z plane, and of 
all space charge. The azimuthal current is not neutr zed. Thus, the vecto 
is A = A e s^ and the fields are described by B = V x and E, = GM,/& 
the vector potential from a modified Ampere’s law: 

where Ai is the self-field component of A, and the transverse displacement current is 
neglected in the usual magnetostatic approximation. Here, 0 is a constant which has 
been introduced to correspond to an effective (artificial) conductivity. Neglecting the 
source term, J,, this field equation has the form of a diffusion equation, and may be 
solved using a time-centered Crank-Nicholson finite difference representation, or by 
a simpler implicit backward difference, which is entirely adequate for the present 
purpose. 

The inclusion of the new (0) term brings about a dissi ion of the energy 
associated with collective motions. While particle orbits in equi um do not lead to 
time-varying currents and fields, collective motion such as breathing leads to a time- 
varying vector potential. This causes azimuthal pseudo-currents -c dA&li% to 
the system, peaked in those regions where the collective motion causes the most 
change in A,. By Lenz’s law, the locations and temporal phases of these currents will 
be such as to bring about modifications to E, and that will damp the ~ndes~rab~~ 
oscillations. During the setup of an equilibrium, energy is dissipated; the amount kost 
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is given by the integral over all space and from the time of initialization until the 
present time of the Ohmic loss per unit volume and time, o(aA,/&)2, a quantity 
which can be monitored so that a check for overall energy conservation is still 
possible. This damping effect is similar to that of the azimuthal resistor wires used in 
the Astron device [ 141. The purpose of these wires is to damp axial motion (and to a 
very slight degree, radial motion) of the energetic particles; this has been modeled in 
simulations of the Astron [ 15, 161, and of proton ring trapping experiments [ 17, 181. 
The present scheme damps axial and radial motion, and does not concern itself with 
the quantitative evaluation of damping effects. Hence, the simple backward difference 
is adequate, while codes which model physical resistive effects should normally 
employ a more sophisticated numerical scheme. The self-magnetic field (hence beta) 
must be fairly large for this method to work; this can be seen by noting that in the 
zero-beta test-particle limit all forces on a particle arise from externally generated 
fields, and so no damping of collective oscilltion can arise from interparticle forces. 

Appropriate choice of the constant o is made by the observation that damping will 
be most effective if it is near-critical; that is, the time scale of the oscillations to be 
damped should be matched by an L/R time corresponding to a inductor with 
dimensions those of the high beta plasma system (gradient lengths) and conductivity 
(r. In actuality the value of Q need not be carefully chosen-almost any roughly 
reasonable value will work fairly well, and a trial-and-error procedure can be used to 
refine a poor initial guess. 

As equilibrium is reached, the size of the resistive term diminishes, until it becomes 
entirely negligible. If collective oscillations of several different timescales need be 
damped, LT might be changed as time goes on: or, the damping might be eliminated 
altogether if perturbations will be applied to the equilibrium and a natural response of 
the particles is desired. 

Presented in Fig. 1 are results obtained using an infinite-layer ,ld2v (one spatial 
coordinate, two velocity coordinates) version of the zero-order (equilibrium) portion 
of the linearized hybrid code RINGHYBRID [IO], which in the more general case 
models a 2d3v equilibrium, assuming azimuthal symmetry only. In this example we 
have assumed an infinitely long system, so that a/az = 0, for simplicity. Other results 
using this code, and using RINGA, a fast 2d3v particle code [ 17, 181, confirm that 
the technique works well for finite length equilibria as well. In the run shown, a total 
of 600 super-protons were injected over 50 timesteps, at 12 evenly spaced injection 
radii between 10 and 24 cm. (the wall was at 24 cm.). The cyclotron period in the 
external field was 80 timesteps; including self-field effects (hoop stress and image 
currents) the mean gyration period was about 110 timesteps. The mean radial 
betatron period was somewhat shorter; usually the limit on the size of the timestep 
which may be taken is set by this betatron period, but in this case the timestep was 
smaller than necessary due to limitations set by the first-order part of the code, not 
relevant to this discussion. Enough particles were injected so that the self-magnetic 
field under the layer was 70% of the applied field. Other parameters for this run are: 
Ar = 1 cm., At = 1 ns., Yinjection = 0.76 x 10’ cm/set at r = 12 (varies proportional 
to r), and Bext = 8 kG, so that wciAt = 0.07854 =21-c/80. There were 3.9 X 1015 
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FIG. 1. Quantities as functions of timestep for infinite iayer run without resistive damping: 
(a) Average radius. (b) Radial RMS halfwidth. (c) Magnetic field: external, on axis, and at point of 
maximum reversal (the last two are superposed here as no pseudo-currents flow between the layer and 
the axis). (d) Particle, field, and total energies. Note that the total injected particle energy in these units 
is 2.8; the difference is due to the fact that the first particles injected experience an E, due to injection of 
later particles. 
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FIG. 2. The same quantities for a run identical to that of Fig. 1 except that c was set to 
8 mho/meter (1, in dimensionless units). 



110 FRIEDMAN,DENAVIT,AND SUDAN 

protons per unit axial length, and a typical ion density was 1.3 x 1Ol3 cm-3. ,Note 
the persistent collective motion, especially that of the major radius, in the figure. 

Figure 2 shows results for a similar run wherein a damping term 0 = 8 mho/meter 
(or, in “internal” dimensionless units, l.O-see Ref. [lo]) was added to the field 
solution. Here, the collective oscillations are seen to damp away. (Numbers appearing 
at the sides of the plots are in dimensionless units, included to facilitate comparisons 
between the two runs, while numbers along the lower edges of the plots indicate 
timesteps.) It should be noted that the parameters of this run were the first ever tried 
with this system; no fine-tuning of rr whatsoever was done. It is evident that inclusion 
of the resistive term greatly influences the motion, and that only the energy associated 
with collective ring motion is removed. 

III. STOCHASTICITY IN THE ZERO ORDER SIMULATION 

A. Observation of Stochasticity; Loss of Symmetry 

The first manifestation of stochasticity is evident in the zero order particle orbits. 
Particles are injected over a number of timesteps to build: up an approximate 
equilibrium possessing mirror symmetry about the plane z = L/2. That is, for each 
particle with phase-space location (r, , zl, v,.~, v @i, v,,) there is another particle at 
( r2, z2 ,... > = (rl, L - z1 i v,, , vigl, -u,i). Self-consistent fields are calculated using the 
modified Ampere’s law described in Section II, above. After allowing the equilibrium 
to “settle down” and any gross collective oscillations to phase mix out (for perhaps 
500 timesteps), fields are “frozen” so that the linearized simulation employs time- 
invariant “equilibrium” fields. In contrast with the observed behavior of extremely 
thin bicycle-tire rings wherein left-right mirror symmetry obtains throughout the run, 
in the thicker rings studied mirror symmetry is seen to persist for a time on the order 
of 1000 timesteps, after which it is observed to break down for some of the particles. 
This can be interpreted as follows: the mirror image particles are in fact only mirror 
images to one part in (say) 1013-roundoff errors in the computation guarantee that 
no exact mirror symmetry can obtain. Thus, except for the axial reflection about L/2, 
these two orbits can be considered to be “neighboring trajectories.” These diverge 
exponentially in time (with noise superposed), and eventually the difference between 
the two orbits (i.e., z, + z2 -L) has exponentiated from lo-l3 to unity, and the 
orbits become visibly different. 

A specific example is the run “JVA” (which was rerun as “JWA” with different 
diagnostics). For this run 2400 simulation particles were employed, the major radius 
was r, = 15 (cells), the wall was at r, = 24, and the periodicity length L was 24. The 
radial and axial rms halfwidths were 2.0 and 2.8, respectively (due to finite particle 
size the effective halfwidths are somewhat larger). The external-field cyclotron period 
was 40.0 (timesteps), the mean gyration period being increased to 42 by self-field 
effects. A nominal betatron period, obtained by integrating over Ji (as in Eq. 27 of 
Ref. [ 19]), was 52 timesteps, although axial and radial betatron periods differ greatly 
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for a ring of this geometry. The field reversal factor (ratio of self to external magnetic 
field magnitudes) was 18% on axis, and 25% immediately under the ring. For this 
run the absolute convergence criterion for the zero order field-solver was set to 
EPS = 10-13, so that the initial symmetry was good to somewhat fewer than 13 
digits, taking error propagation on the mesh into considertion (the magnitude of A e is 
of order unity in these simulations). The resistive relaxation term c was used with a 
(dimensionless) value of 0.125, and zero order fields were “frozen” at timestep 450. 

Snapshots of the ring at timesteps 500 and 2000 are presented in Figs. 3a and b, 
respectively. Asymmetries, especially in those particle orbits with large axial 
excursions, are evident in the plots at IT = 2000. 

Figure 4 shows the orbits of a pair of particles which were initially mirror images 
of each other. For each particle Y and z are plotted as functions of time. Mirror 
symmetry is seen to obtain until approximately timestep 1100, at which point the 
orbits become visibly different (much easier to see on a larger plot-on this one the 
orbits differ visibly only after another 100 timesteps or so). The straight vertical lines 
are the result of the periodic particle boundary condition being inforced when a 
particle passes through z = 0 or z = L. Note that this pair of particles was selected to 
illustrate the eventual breaking of mirror symmetry-not all pairs of particles would 
have shown this effect. 

Using an interactive debugging routine, the quantity z, + z2 - L was printed out at 
every other timestep. From this printout the growth rate of the separation of the 
“neighboring” mirror image orbits could be calculated. The timestep at which each 
decade of separation was first reached was noted: 

decade -11 was first reached at IT = 90 
-10 230 

-9 296 
-8 332 
-7 404 
-6 616 
-5 728 
-4 764 
-3 872 
-2 956 
-1 1068. 

We thus find a decade time of roughly (1068 - 90)/10 z 100 timesteps. The 
corresponding growth rate is comparable to the betatron frequency. Plots of this 
quantity for a similar run are shown in Fig. 7, discussed below. 

To further verify that we are not simply observing a code “bug,” runs were carried 
out using other values of the zero order fieldsolver convergence criterion, EPS. Larger 
values of EPS lead to larger ripples in the field and hence larger initial perturbations 
to particle orbits. The stochastic growth rates are unchanged by varying EPS, as the 
field itself is the same to eight or nine digits at worst. Run “JYA” used EPS = lo-“; 
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for this run a difference was visible (on a large copy of Fig. 5) at about IT = 1075. 
This is not much earlier than in JWA, but recall that the growth is noisy and that 
absolute precision of the computer is about 14 digits, so that JWA’s value of EPS 
probably cannot give much better accuracy than the less stringent value used in JYA. 
To see the effect more clearly, another run, “KAA,” was made using EPS = 1O-9 
(see Fig. 6). For this run differences between the mirror image particles are visible at 
roughly IT = 825. This is about 250 timesteps earlier than in run JYA; since this run 
had an initial perturbation roughly 100 times as large as JYA, it would be expected to 
need two decades, or on the order of 200 timesteps, less growth for the sepration to 
be visible (consistent with the value of 250 observed). Note that the lield solver does 
not enforce exact left-right symmetry, and so the fields themselves exhibit a small 
amount of asymmetry which is larger for larger EPS. As stated above, the rate of 
orbit separation does not change with EPS, and so we conclude that the additional 
left-right field asymmetry does not significantly affect the orbital asymmetry except 
for starting it at a higher level initially. Other simulations carried out enforcing field 
symmetry revealed similar stochastic behavior. 

Even though the orbits diverge greatly, energy conservation for both is excellent 
since only “rotations” of the velocity in the magnetic field are performed. Conser- 
vation of canonical angular momentum P, is not trivially guarantted by this 
algorithm, but is always valid to within a few percent even in the worst cases. Field 
quantities are functions of r and z alone, and are thus perfectly axisymmetric, but 
since the field B and not the vector potential A, is employed in the acceleration, the 
canonical angular momentum calculated as a diagnostic can vary with time. 
Deviations are not systematic, and become smaller as the cell size and timestep are 
reduced. Stochastic effects persist when this is done, a further assurance that they are 
not a result of numerical imperfections. 

B. Stochasticity and Confiflement 

The zero order effect eventually leads to a lack of symmetry of the ring; this is 
partly due to the small number of particles leading to fluctuations that only seemingly 
violate axial momentum conservation (consider a single particle in a mirror lield-its 
axial momentum is not conserved). The effect is magnified by the periodic particle 
boundary condition; if one of the ex-mirror image pair of particles reaches the 
boundary at z = 0 or L, and the other does not, the center of mass of the ring shifts 
to one side or the other. 

In addition, a particle may leave the ring (by entering the “loss cone”) even after it 
has exhibited a large number of betatron oscillations whithin the confines of the ring; 
such a particle must be considered an “unconfined particle.” An example is shown 
below wherein one particle was unconfined (first reached z = 0 or L) at timestep 
2600, while its “mirror image” was confined until timestep 8400. The equilibrium 
fields of necessity include contributions from this class of particles. Lovelace et al. 
have shown that exponential rigid rotor equilibria, for example, contain a class of 
unconfined orbits [20, 211. 

There appears to be a correlation between whether or not a particle’s orbit is 
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unconfined and whether or not it is stochastic (as expected, since both are ass 
with high energy), but it is not one-to-one. That is, some apparently confined p 
show stochastic motion-one cannot be sure they are in fact confined without rnak~~g 
an infinitely long run, at least with the usual scheme of injection wherein ra 
velocities are added to the injected particles (in a mirror-syrnrnet~~~ manner). 
recently, a run (KKA) was made wherein no random velocities were added. Hn this 
run each group of injected particles chould only self-pinch together, and lose energy 
due to the inductive electric field when succeeding groups of particles were injected. 
Thus, all particles were necessarily confined (this was observed to be the case); 
nonetheless, the stochasticity-induced asymmetry was present in this run, Note that 
this method of injection gave an equilibrium which was not at all iike a rigid rotor in 
that the angular velocity showed high shear. 

On energetic grounds one expects a different relationship between ~on~~~rne~t and 
stochasticity depending upon whether the particle orbit encircles the axis (ion ring 
case) or does not (small-orbit mirror plasma, most particles). Xn “&e former, the level 
surfaces of the effective potential are closed, so that particles of small enough energy 
must be absolutely confined, while in the latter, the surfaces extend to infinity and 
confinement normally depends upon the particle pitch angle [22]. Jumps in the 
adiabatic invariant ,U associated with stochasticity effectively enlarge the lsss cone so 
that all stochastic orbits which do not encircle the axis are unionized and should be 
excluded from the equilibrium [2]. However, for the ion-ring case (and for iarge orbit 
geld-reversed mirrors as well) our experience suggests that an appreciable ~~rn~~~ of 
confined stochastic particles are generally present, at least when equilibria are f~~~~ed 
by injection. Furthermore, an unconfined particle may remain trapped in the system 
for an arbitrarily long time interval; see Section E below for an example. 

We note in passing that in connection with the adiabatic invariant ,U the non- 
stochastic regime is often referred to as “superadiabatic” [a]. n this regime j~rn~s in 
,U with each traverse of the system are not independent of each other, but 
correlated in phase; successive p values lie on a bounded curve which is a pesio 
function of time, and on a surface of section plot a s~~erad~abat~c orbit traces out a 
closed curve. 

63. System Length and “Unfrozen” Fields 

Runs were made using a larger number of cells axially (a larger vacuum region on 
each side of the ring, and a longer periodicity length-the cell size was kept 
constant). un “JZA” used 48 cells in z, while “‘KBA” used 96 cells. IIn generai, we 
observed that the longer the periodicity length, the longer it for the (same) two 
t.est particles to show asymmetry. Note that asymmetry sho up in the latter run 
even though the test pair did not reach the axial boundary during the run, but took 
nearly to timestep 2000 to do so, in contrast with the shorter systems de abave 
wherein asymmetry was visible after about 1000 steps. presumably this in the 
rate of growth of asymetry occurs because the shape of the effective potential well is 
different for the various system lengths, both due to the boundary condition on 
fieldsolver being imposed at different places and due to the fact that in the axi 
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short runs the particle periodicity condition was enforced more often during the 
setting up of the equilibrium fields. We do not anticipate that making the system even 
longer would reduce the stochastic behavior to any great degree, since the 96-cell 
system is already much longer than the ring. However, we have not verified this con- 
jecture. 

For the axially long systems, the axial halfwidth of the ring was observed to 
increase at long times both more rapidly and to a larger value than in the shorter 
systems (with similar rings but different “tanks”). Presumably this is due to the fact 
that when particles find their way into the “loss cone” they have a larger distance to 
travel before reentering the ring region one axial period later, and so the halfwidth 
can grow appreciably. The growth in axial length is associated with unconfined (high 
energy) particles, and so tends to be present when stochastic orbits are present. 

The breaking of mirror symmetry, and the axial halfwidth growth as well, were 
present even in a run wherein the zero order fields were never “frozen”; in fact the 
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FIG. I. Plot of (r, - r2( and (zI + z2 -L ( as functions of time for a run with L = 96. The maxima of 
these quantities are seen to be of order the system size. 
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halfwidth growth was somewhat more pronounced in this case. We conclude that 
keeping fields “unfrozen” does not reduce the effects of stochastic orbits. 

D. Implications of Loss of Symmetry 

We believe this loss of symmetry has not been noted previously in simulations of 
field-reversed ion rings and mirror plasmas, although it may have been present in 
runs of SUPERLAYER [ 15, 161 or RINGA [ 17, 181. Normally, small deviations 
from symmetry (in runs where symmetry would be expected) are not measured in 
such simulations, and in a nonlinear 2D3V code these are the only quantities which 
grow exponentially. Also, “saturation” of this effect must set in when the amplitude 
becomes comparable to the system size, or perhaps more properly to a smaller 
“island width” of the stochastic region in the r - z projection of phase space [ 21. 
Figure 7 shows the quantities ) rl - r, ( and ]zl + z2 -L) plotted as functions of time 
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FIG. 9. A surface of section plot for the particle of Fig. 8, as described in the text. Diagnostics were 
performed every other timestep, and linear interpolation between these points was used. Note that points 
fall on a crescent but do not fill the area enclosed by the crescent. 
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for a rtm with L = 96. The last three decades of exponential growth, and the 
“‘saturated” state, can be seen. Here “saturation” appears to occur when the 
separation of the orbits is of order the system size. 

The loss of symmetry to zero order probably is not of great f~~darne~ta~ conse- 
quence by itself. One could simulate only the region Z > L/2 for example, e~for~~~g 
the mirror symmetry for all time, if one were only interested irr the zero order ring 
behavior. 

E. Surfaces of Section and Stochasticity 

To confirm that we are in fact observing both nonstochastic and stochastic o 
surface of section plots were generated. These show the prticular values taken 
and i: of each particle as the particle passes through z = L/P. Such plots, and 
variations using other variables, have been employed previously to show orbital 
stochasticity ]I]. They depict a “slice” of the phase space through which the particle 

12 15 f 

r 

FIG. 10. Another surface of section plot for the particle of Fig. 8, but with diagnostics performed 
every timestep. Less spread in the pattern is evident. 
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trajectory moves. If the particle orbit is to sweep out a nonzero volume of this space, 
it must also sweep out a nonzero area of the slice. To make the plots, a postprocessor 
program was written. It extracted the tracer particle histories of r and z as f~~c~~~~s 
of time from a printed output file, which was generated by 
rearranged using a text editor. The program computed the inst 
z = L/2 was crossed using linear interpolation on the history of Z. Again using linear 
interpolation, the values of r at these same instants were calculated from the Y 
history. Finally, the associated values of i were calculated by a simple finite 
difference. While this interpolation scheme is of low order, it appears to be 
reasonably effective when small timesteps are taken and the histories are arrange 
as to save every point of the trajectory. Furthermore, it can be argued that the simple 
leapfrog mover used by the codes does not justify a higher-order ~~ter~olatio~ 
scheme, though this point is not entirely clear. 

Illustrated in Fig. 8 are the r and z histories of a nonstochastic particle selected 

: . 

10 15 20 

FIG. 12. Surface of section p!ot for the stochastic particle of Fig. 11. The points fill an annular 
region, and are not confined to the outline of a region as was the case for the particle of Figs. 8-10. 
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FIG. 13. R and z histories for the particle that was initially the mirror image of the particle of 
Figs. 11 and 12. This particle appears to be confined-in fact it becomes unconfined at timestep 8400, 
beyond the end of this plot. 
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from a run with L = 96. The plot shows the trajectory over 8000 timesteps, a very 
long run for the code. In Fig. 9 the surface of section plot for this particle is shown. 
Fields were “frozen” at timestep 450 and every other timestep was saved in the 
history file; the plot shows points taken from the interval between timesteps 452 an 
8000. The plane z = L/2 was crossed 235 times during this time. Points in this piot 
are observed to fall on a crescent-shaped curve, without filling in the area of the 
crescent. There is, however, considerable raggedness to the plot, which may be 
ascribed to the finite timestep and the diagnostic interval of two. The raggedness is an 
artifact of the algorithm used to generate the plot, and does not result from orbital 
stochasticity. To demonstrate this, Fig. 10 shows a surface of section for the same 
particle using a diagnostic interval of one step and starting from timestep 451. The 
curve is seen to be much smoother than that of Fig. 9. This example illustrates the 
need for care in the implementation of such diagnostics, to prevent false indications 
of stochastic&y. 
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FIG. 14. Surface of section plot for the particle of l+.$. 13. 
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The orbit of a stochastic particle from the same run is shown in Fig. 11. The 
particle is not bound and the periodicity condition is enforced a number of times, the 
first time being approximately at timestep 2600. The surface of section plot for this 
particle is shown in Fig. 12. Diagnostics were made every timestep. For this 
trajectory there were 89 crossings of z = L/2. There is evidently a qualitative 
difference between this orbit and the previous one, as here the points do not lie on a 
smooth curve but appear to fill an annular region of the plane. The orbit of the 
particle that was initialized to be the mirror image of the particle in Fig. 11 is shown 
in Fig. 13. In contrast with its “mirror image,” this particle appears to be bound for 
the 8000 timesteps illustrated. In fact, a continuation of the run shows this particle to 
be unbound, first reaching the end of the system at timestep 8400. It would be 
surprising were this not the case, as the same regions of phase space should normally 
be acessible to both of a mirror image pair of stochastic particles. The surface of 
section plot for this trajectory is shown in Fig. 14; in fact, this plot and that of 
Fig. 12 might be superposed to give a clearer picture of the area of the r - i plane 
accessible. There were 154 crossings of z = L/2 in this case. 

IV. STOCHASTICITY IN THE LINEARIZED SIMULATION 

A. Observation 

The second manifestation of the diverging trajectories is of much greater 
fundamental concern. In the first order linearization, we consider the motion of a 
“displaced point” P’ relative to that of an unperturbed point P [lo]. The vector 
separation between the two is denoted as E. Point P’ also moves in the zero order 
field, but this field is evaluated at the perturbed location, while the field for particle P 
is evaluated at the unperturbed location. Since the points P and P’ represent 
neighboring trajectories, when orbits are stochastic we can expect the magnitude of E 
to increase exponentially with time whether or not Eulerian first-order fields are 
included in the calculation, since the stochastic separation is due to particle motion in 
the inhomogeneous zero order field. This is in fact the observed behavior. 

Figure 15 shows part of a non-stochastic particle orbit (r and z versus time) 
selected from a run with the parameters of KBA. This is the same particle plotted in 
Fig. 8; timesteps 2000 to 4000 are shown here in detail. For this particle, time 
histories of the magnitudes of the r, 19, and z components of E are plotted in Fig. 16. 
The initial excitation was implemented by giving all particles a positive first order 
axial velocity 2 at timestep 500, and no Eulerian first order fields were included in the 
calculation. All components of E are seen to oscillate steadily. This may be contrasted 
with the behavior of the stochastic particle of Fig. 11, part of the orbit of which is 
shown in greater detail in Fig. 17. As seen in Fig. 18, all components of E grow 
noisily. Figure 19 shows the time histories of the components of the mean E obtained 
by averaging over all particles. The mean a, shows stable oscillation at first, as would 
be expected without any first order field response to drive kink modes, etc., but soon 
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FIG. 15. Expanded r and z histories for the nonstochastic particle of Figs. 8-10. 

lQ7 I I 

‘07i 

2000 T 4000 

FIG. 16. Time histories of the magnitudes of the r, 6, and z components of E for the nonstochastic 
particle of Figs. S-10 and 15. 



128 FRIEDMAN, DENAVIT, AND SUDAN 

24 

r 

0 

96 

Z 

0 

t I c 
0 T 2000 

FIG. 17. Expanded r and z histories for the stochastic particle of Figs. 11 and 12. 
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FIG. 18. Time histories of the magnitudes of the r, 0, and z components of E for the stochaskc 
particle of Figs. 11, 12, and 17. Noisy growth is evident. 
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FIG. 19. Time histories of the magnitudes of the mean r, I!?, and z components of E obtained by 
averaging over all particles. 

the ragged growth characterizing the single-particle modes takes over. The r and B 
mean components are initially zero due to the symmetry of the first order 
initialization. As symmetry breaks down they grow rapidly to a level corn~a~~b~e to 
that of the z components, then grow at the same (slower) rate as the latter. This is 
because the three components of E are mutually coupled for each particle, as seen in 
the previous figure. The growth is even faster in runs with a shorter ~eri~~i~i~y 
length L. 

When the term v,, x (E . V) B, in the linearized equation of motion is deleted, the 
first order motion is observed to become stable. To understand this lack QE growth 
note that, by taking the scalar product of (vO + E) with the linearized equation of 
motion for the same quantity, 

d/dt[(vo + i)“] = 2i - [v. x (E * V) B,], 

so that a cannot grow indefinitely when the right-hand side is zero. This term is 
responsible for making the orbit of P' a neighboring orbit to that of P, and not an 
identical orbit as when the term is omitted. 

Because of the relationship between high energy (large excursion) and 
stochasticity, an attempt was made to eliminate the large-excursion particles by 
placing “sticky” walls at Z = 6 and 18, in a run with L = 24. While 400 of the 24 
particles were removed, stochastic growth of E was still present, and the rna~~rn~rn 
growth rate was only slightly less than in the comparable run,made without the sticky 
walls. See also the discussion of run KKA in Section 1II.B above. 
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B. Implications 

This type of dynamical instability is quite distinct from the collective plasma 
effects we wish to examine. In a true Vlasov plasma with an infinite number of 
particles, the random phases of the growing displacements a for all particles would be 
expected to cancel out in the mean, and no gross plasma moments would be affected. 
However, in a simulation plasma with perhaps one to ten thousand particles, this may 
not be the case. Since different particles have different growth rates, the single-particle 
growth of one or a few particles comes to dominate, and when we examine moments 
such as mean E, first order currents, etc. the only thing that appears is the effect of 
this one or few particles. Unless the collective modes have a higher growth rate than 
the fastest growing single particle mode, only the latter can be seen, and regardless of 
background plasma parameters the growth will appear the same. 

If one attempts to minimize the stochastic growth by increasing the number of 
particles, the reduction is small since the cancellation should improve only as the 
square root of the number of particles. Attempts to reduce the mean rate of growth 
by employing up to 9600 particles were unsuccessful, possibly because when more 
particles were used some fell on orbits with even higher associated growth rates. 
Cancellation would possibly occur if a far greater number of particles were employed, 
but no clear dependence of the stochastic growth rate upon the number of simulation 
particles has been observed. 

J. M. Finn has observed, in computer experiments using model potentials, a strong 
model dependence of the stochastic properties [ 11. In two of three models, including 
one self-consistent model, he observes predominantly stochastic behavior, while in the 
last (nonself-consistent) model he observes only limited stochastic behavior. Larrabee 
and Lovelace, using a different self-consistent model developed for studies of ion ring 
compression, find stochastic orbits to be present only in the minority of cases [3]. 
They suggest that meaningful conclusions about the stochasticity of orbits can be 
drawn by examination of the parameters describing the bottom of the effective 
potential well, and the stability of orbits which exhibit little excursion in the axial 
direction. A class of field reversed ring equilibria which excludes stochastic motion 
because the spatial dependence of A, is such that other constants of the particle 
motion are explicitly present has been described by Channel1 [4]. These equilibria 
also have the property that all particles are confined. However, to data no actual 
examples have been constructed. By suitable choice of model it is thus possible to 
find equilibria with only weak single-particle growth, or none at all. This necessarily 
entails a serious restriction on the class of problems which can be run. 

Discrete representations of numerically calculated Vlasov equilibria afford 
complete control over the particle distribution, while equilibria formed by injection, 
as described herein, are rather likely to encompass stochastic orbits. However, recent 
work employing exponential rigid rotor equilibria computed on a grid has shown that 
these equilibria entail a significant fraction of stochastic orbits also [ 12, 131, and 
thus equilibria other than the exponential rigid rotor may be more tractable for 
linearized simulation. Furthermore, even some equilibria formed by injection are 
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usable; in one fully field reversed ring with an aspect ratio of order 4 : I the 
stochastic ‘growth is slow enough that meaningful conclusions about collective 
behavior can be drawn from the results. Studies of ion ring stability employing this 
equilibrium will be described in a later paper 1231. 

It may be possible to treat problems involving stochastic orbits by other means. 
Perhaps the fastest-growing particles can be removed from the ~orn~~t~tio~ 
artificially, at some risk of affecting the physics. This may be most reasonable for 
mirror plasmas where only a small fraction of the particles are both axis-encircling 
and stochastic. To date we have had little success with this approach. more 
promising approach is the periodic “reconstruction’5 of the coherent part of the 
distribution function f’ in a moment conserving manner, as a means of srnoo~~~~~ 
out the single-particle effects. We have had some preliminary success with a 
reconstruction technique that assumes a “rigid” perturbation, i.e., one for which the 
mean displacement of particles in the poloidal plane is approximately independent af 
position in that plane [ 13, 231. To see how this works, refer to Fig. 19, and note that 
a smooth coherent behavior (a damped, phase-mixing os~iilation) dominates the 
mean axial displacement for a period of time before the single-particle i~stab~I~t~ has 
had a chance to exponentiate from the very low level associated with roundoff and/or 
asymmetry to a large level. By periodically setting the displacement of each p 
equal to the mean displacement of all particles (and similarly for the first 
velocities), the coherent perturbation of a rigid mode is preserved, while the ra~~~~~ 
part is reset to zero before it can dominate. Using this technique, we have been able 
to observe both unstable and stable tilting motions of an exponential rigid rotor ion 
ring [23 1. Even though the true mode may not be perfectly rigid, its projection onto a 
rigid displacement is often large enough for the technique to work. 

We believe that a more general “local” reconstruction algorithm is possible, at 
least for fluidlike modes for which the dominant perturbation in the di 
field at each point in space is single valued. first order d~s~la~~rne~t a 
of each particle might be set equal to th verages of these quantiti 
particles in the cell, or an area-weighting procedure might be used [as]. ~lter~atei~~ 
local or global tieldiine averages might be used for flute or balooning modes, wielding 
better statistics at the expense of generality in the mode structure. Orbit averaging 
might be used to improve the particle statistics, since the modes of interest are 
generally of low frequency, while the noise in large part is of higher freq~e~~~es. 

The most general reconstruction would involve averaging the displacement of a 
particle only with the displacements of the particle’s neighbors in 
principle, such a scheme could be employed in the study of modes having arbitrary 
structure. 

V. CONCLUSIONS 

In summary, the effects of stochastic single-particle orbits have been observed in a 
series of computer simulations of strong ion rings. It is anticipated that they are also 
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present in a wide class of systems such as field-reversed mirror plasmas with large 
nominal gyroradii. Nonlinear axisymmetric codes are able to treat problems involving 
stochastic orbits with only minor difficulties. These include an eventual violation of 
mirror symmetry and small fluctuations in a normally conserved momentum. 
Linearized codes, however, are more severely affected by the presence of stochastic 
orbits. The exponential growth of the displacement between unperturbed and 
perturbed trajectories can be sufficiently rapid as to mask the collective modes which 
are the true objects of study. Fully nonlinear 3d codes may also experience 
difftculties when stochastic orbits are present, if the intuitively noise-reducing “quiet- 
start” technique of loading particles on axisymmetric rings (in the present geometry) 
or straight rods, etc. (in other geometries) is employed. The linear growth phase of 
instabilities may be masked as it is in the linearized simulations, and modes might 
even saturate at lower levels than the level associated with cessation of exponential 
orbit separation. If no “quiet” loading is employed, a very large number of particles 
is likely to be needed to see linear growth, since small excitations will normally be 
invisible due to the high fluctuation level associated with the discreteness of the 
distribution. 

By careful choice of equilibria, straightforward linearized simulation can still be a 
useful tool for the study of Vlasov stability. When suitable “reconstruction” 
algorithms have been developed and implemented, this type of simulation should be 
applicable to a wider class of problems. 
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